QTL Pyramiding and Its Use in Breeding for Increasing the Phytoextraction Efficiency of Soil Cd via High-Cd-Accumulating Rice

PLANTS-BASEL(2022)

引用 1|浏览3
暂无评分
摘要
Phytoextraction by high-Cd-accumulating rice lacking a functional OsHMA3 allele is promising for Cd removal from paddy soils. To increase rice Cd extraction efficiency, we developed a new high-Cd variety, TJN25-11. For this, we pyramided a nonfunctional OsHMA3 allele from a high-Cd variety, Jarjan, and two QTLs for increased shoot Cd concentrations, which were discovered in a mapping population derived from a high-Cd variety, Nepal 555, and a low-Cd variety, Tachisugata. In two Cd-contaminated paddy fields under drained aerobic soil conditions, TJN25-11 presented significantly higher Cd concentrations in the straw and panicles than the OsHMA3-deficient varieties TJTT8 and Cho-ko-koku. Among the varieties, TJN25-11 had a relatively high shoot biomass, resulting in the highest Cd accumulation in the shoots. The soil Cd decreased by approximately 20% after TJN25-11 growth. The amount of Cd that accumulated in the TJN25-11 aerial parts was much greater than the amount of Cd that decreased in the topsoil, suggesting that Cd was absorbed from deeper soil layers. Thus, we revealed the effects of QTL pyramiding on shoot Cd accumulation and Cd phytoextraction efficiency. Since TJN25-11 has favorable agronomic traits for compatibility with Japanese cultivation systems, this variety could be useful for Cd phytoextraction in Cd-contaminated paddy fields.
更多
查看译文
关键词
rice, cadmium, phytoextraction, three-way cross, Cd-accumulating ability, DNA marker-assisted breeding, food safety
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要