Effect of uncertainties in geometry, inter-layer boundary and shear strength properties on the probabilistic stability of a 3D embankment slope

GEORISK-ASSESSMENT AND MANAGEMENT OF RISK FOR ENGINEERED SYSTEMS AND GEOHAZARDS(2023)

Cited 4|Views5
No score
Abstract
This paper investigates the influence of three forms of uncertainty on the probabilistic stability of an idealised 3D embankment slope. These are: 1D spatial variability in the external geometry of the slope along its length, 2D spatial variability in the depth of the boundary between the embankment material and the foundation layer, and 3D spatial variability in the shear strength properties of the slope and foundation materials. The relative influence of each uncertainty has been investigated using the random finite element method, based on statistics consistent with a Dutch regional dyke. The results indicate that, for such a structure, the soil spatial variability has a much greater influence than uncertainties relating to embankment geometry and inter-layer boundary. In particular, it is demonstrated that the spatial correlation of material properties along the length of the embankment has a greater influence on the probabilistic characteristics of the embankment slope stability and failure consequence than the spatial correlation of properties perpendicular to it. A worst case scale of fluctuation for the material properties is identified.
More
Translated text
Key words
Geometry, random finite element method, slope stability, spatial variability, three dimensional
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined