A Novel Step-by-Step Automated Heat Exchanger Network Retrofit Methodology Considering Different Heat Transfer Equipment

PROCESSES(2022)

引用 1|浏览13
暂无评分
摘要
Improving the energy efficiency in heat exchanger networks (HENs) remains a significant industrial problem, specifically in energy-intensive operations. A particular method for such an objective is the modification of HENs at the equipment-use level, where structural changes take place and units within the network are moved, replaced and/or removed. This practice is usually known as retrofit. The objective of a retrofit is to maximize the heat recovery using the minimum modifications possible and minimum retrofit cost. Traditional retrofit techniques would normally consider one type of heat exchanger (based on the original network) with no additional design features (i.e., heat transfer enhancement technologies). The expansion of such alternatives is limited by practical use and availability of theoretical methods. In this context, the inclusion of high-performance heat exchangers such as plate heat exchangers (PHEs) has not been widely explored, even when their design and operational advantages are known. In this work, a new step-by-step automated HENs retrofit approach based on Pinch Analysis is proposed. The approach is possible to identify the best modification, its location within the network, and its cost simultaneously. Moreover, to increase energy savings, this work presents a strategy that seeks to utilize high efficiency heat exchangers such as plate heat exchangers for retrofit. A distinctive feature of this new method is the ability to handle different minimum approach temperatures, given the different types of exchangers, within the optimization of HENs. Three cases are studied using this methodology to quantify the potential benefits of including PHEs in HEN retrofits, via the analysis of the retrofit cost. Results are compared with a baseline consisting in the same network, where only Shell-and-Tube-Heat-Exchangers (STHXs) are used. In addition, the results demonstrate that this methodology is flexible enough to be applied in a wide range of retrofit problems.
更多
查看译文
关键词
heat exchanger network retrofit, plate heat exchanger, network pinch, different types of exchangers
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要