Chrome Extension
WeChat Mini Program
Use on ChatGLM

Heterogeneous Interfaces of Magnetic CIP and Binary Dielectric Carbon-Based Material Toward High-Efficiency Microwave Attenuation

FRONTIERS IN MATERIALS(2022)

Cited 0|Views9
No score
Abstract
Carbon-based materials, as lightweight absorbers, have been widely applied in varied fields to counteract the adverse effects of electromagnetic waves. Nevertheless, there remain challenges in coping with the impairment of microwave absorption performance caused by the excessively high permittivity of carbon materials. Herein, carbonyl iron powder (CIP) was added to graphene oxide/carbon black (RGO-CB) composites to adjust the permittivity improving impedance matching and electromagnetic absorption properties. In this work, the RGO provides a three-dimensional structure net, which introduces circularly and variously electromagnetic loss interfaces within the RGO-CB/CIP composites. Owing to the unique architecture and synergy of the three components, the as-prepared absorber exhibits good impedance matching and gratifying microwave absorption properties. It was found that the 1:1 mixture of RGO-CB and CIP in the composite had superb impedance matching at the thicknesses of 2.6 and 2.7 mm to achieve complete X-band microwave absorption. Such excellent performance benefits from the multiple polarization provided by the heterogeneous interfaces and the ideal impedance match attributed to the tunable permeability and permittivity of this work.
More
Translated text
Key words
RGO, CIP, CB, X-band, microwave absorption, reflection loss
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined