Chrome Extension
WeChat Mini Program
Use on ChatGLM

Auto-segmentation for total marrow irradiation

FRONTIERS IN ONCOLOGY(2022)

Cited 1|Views7
No score
Abstract
PurposeTo evaluate the accuracy and efficiency of Artificial-Intelligence (AI) segmentation in Total Marrow Irradiation (TMI) including contours throughout the head and neck (H&N), thorax, abdomen, and pelvis. MethodsAn AI segmentation software was clinically introduced for total body contouring in TMI including 27 organs at risk (OARs) and 4 planning target volumes (PTVs). This work compares the clinically utilized contours to the AI-TMI contours for 21 patients. Structure and image dicom data was used to generate comparisons including volumetric, spatial, and dosimetric variations between the AI- and human-edited contour sets. Conventional volume and surface measures including the Sorensen-Dice coefficient (Dice) and the 95(th)% Hausdorff Distance (HD95) were used, and novel efficiency metrics were introduced. The clinical efficiency gains were estimated by the percentage of the AI-contour-surface within 1mm of the clinical contour surface. An unedited AI-contour has an efficiency gain=100%, an AI-contour with 70% of its surface<1mm from a clinical contour has an efficiency gain of 70%. The dosimetric deviations were estimated from the clinical dose distribution to compute the dose volume histogram (DVH) for all structures. ResultsA total of 467 contours were compared in the 21 patients. In PTVs, contour surfaces deviated by >1mm in 38.6% +/- 23.1% of structures, an average efficiency gain of 61.4%. Deviations >5mm were detected in 12.0% +/- 21.3% of the PTV contours. In OARs, deviations >1mm were detected in 24.4% +/- 27.1% of the structure surfaces and >5mm in 7.2% +/- 18.0%; an average clinical efficiency gain of 75.6%. In H&N OARs, efficiency gains ranged from 42% in optic chiasm to 100% in eyes (unedited in all cases). In thorax, average efficiency gains were >80% in spinal cord, heart, and both lungs. Efficiency gains ranged from 60-70% in spleen, stomach, rectum, and bowel and 75-84% in liver, kidney, and bladder. DVH differences exceeded 0.05 in 109/467 curves at any dose level. The most common 5%-DVH variations were in esophagus (86%), rectum (48%), and PTVs (22%). ConclusionsAI auto-segmentation software offers a powerful solution for enhanced efficiency in TMI treatment planning. Whole body segmentation including PTVs and normal organs was successful based on spatial and dosimetric comparison.
More
Translated text
Key words
auto-segmentation, auto-contouring, artificial intelligence, total marrow irradiation, total marrow lymphoid irradiation
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined