$\tilde{O}(n+\mathrm{poly}(k))$-time Algorithm for Bounded Tree Edit Distance

arXiv (Cornell University)(2022)

Cited 0|Views4
No score
Abstract
Computing the edit distance of two strings is one of the most basic problems in computer science and combinatorial optimization. Tree edit distance is a natural generalization of edit distance in which the task is to compute a measure of dissimilarity between two (unweighted) rooted trees with node labels. Perhaps the most notable recent application of tree edit distance is in NoSQL big databases, such as MongoDB, where each row of the database is a JSON document represented as a labeled rooted tree, and finding dissimilarity between two rows is a basic operation. Until recently, the fastest algorithm for tree edit distance ran in cubic time (Demaine, Mozes, Rossman, Weimann; TALG'10); however, Mao (FOCS'21) broke the cubic barrier for the tree edit distance problem using fast matrix multiplication. Given a parameter $k$ as an upper bound on the distance, an $O(n+k^2)$-time algorithm for edit distance has been known since the 1980s due to the works of Myers (Algorithmica'86) and Landau and Vishkin (JCSS'88). The existence of an $\tilde{O}(n+\mathrm{poly}(k))$-time algorithm for tree edit distance has been posed as an open question, e.g., by Akmal and Jin (ICALP'21), who gave a state-of-the-art $\tilde{O}(nk^2)$-time algorithm. In this paper, we answer this question positively.
More
Translated text
Key words
bounded tree edit
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined