The dipeptidyl peptidase-4 inhibitor linagliptin ameliorates LPS-induced acute lung injury by maintenance of pulmonary microvascular barrier via activating the Epac1/AKT pathway

Biomedicine & Pharmacotherapy(2022)

Cited 3|Views7
No score
Abstract
Pulmonary microvascular endothelial cells (PMVECs) barrier dysfunction is a main pathophysiological feature of sepsis-related acute lung injury (ALI). This study aimed to investigate whether the dipeptidyl peptidase (DPP)-4 inhibitor linagliptin could protect against LPS-induced PMVECs barrier disruption and its underlying molecular mechanisms. A classical ALI animal model and LPS-treated PMVECs were applied and all were treated with or without linagliptin. Cellular experiments demonstrated that linagliptin could mitigate LPS-induced PMVECs hyperpermeability and intercellular junction (VE-cadherin, β-catenin, and ZO-1) disruption in a dose-dependent manner. Correspondingly, it was observed that linagliptin pretreatment distinctly relieved LPS-induced lung injury, oxidative stress, and pulmonary edema in vivo. Furthermore, we found that the inhibition of oxidative stress by linagliptin may be achieved by reversing impaired mitochondrial function. Mechanistically, linagliptin administration promoted the activation of the Epac1 pathway and its downstream AKT pathway, while inhibition of the Epac1/Akt signaling pathway significantly alleviated the above-mentioned protective effect of linagliptin on the PMVECs barrier. Taken together, these data suggest that linagliptin can effectively reserve PMVECs barrier dysfunction and inhibit oxidative stress to protect against ALI via activating the Epac1/AKT signaling pathway, and thus may become a potential clinical therapeutic strategy for ALI.
More
Translated text
Key words
Linagliptin,Acute lung injury,Microvascular endothelium,Barrier function,Epac1
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined