Note on the Non-CO2 Mitigation Potential of Hybrid-Electric Aircraft Using “Eco-Switch”

Journal of Aircraft(2022)

引用 0|浏览2
暂无评分
摘要
No AccessEngineering NotesNote on the Non-CO2 Mitigation Potential of Hybrid-Electric Aircraft Using “Eco-Switch”Malte Niklaß, Benjamin Lührs and Majed SwaidMalte NiklaßDLR, German Aerospace Center, 21079 Hamburg, Germany*Scientist, Air Transportation Systems; .Search for more papers by this author, Benjamin LührsDLR, German Aerospace Center, 21079 Hamburg, Germany†Scientist, Air Transportation Systems; .Search for more papers by this author and Majed SwaidDLR, German Aerospace Center, 21079 Hamburg, Germany‡Scientist, Air Transportation Systems; .Search for more papers by this authorPublished Online:12 Sep 2022https://doi.org/10.2514/1.C036826SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Global Market Forecast. Cities, Airports & Aircraft 2019–2038, Airbus, Blagnac, France, 2019, Chap. 1. Google Scholar[2] Technology Roadmap of the International Air Transport Association, Vol. 4, International Air Transport Assoc., Montreal, 2013, Fig. 1–2. Google Scholar[3] Kharina A. and Rutherford D., Fuel Efficiency Trends for New Commercial Jet Aircraft: 1960 to 2014, International Council on Clean Transportation, Washington, D.C., 2015, Fig. ES-1. Google Scholar[4] Lee D. S., Pitari G., Grewe V., Gierens K., Penner J. E., Petzold A., Prather M. J., Schumann U., Bais A., Berntsen T., Iachetti D., Lim L. L. and Sausen R., “Transport Impacts on Atmosphere and Climate: Aviation,” Atmospheric Environment, Vol. 44, No. 37, 2010, pp. 4678–4734. https://doi.org/10.1016/j.atmosenv.2009.06.005 CrossrefGoogle Scholar[5] Lee D. S., Fahey D. W., Skowron A., Allen M. R., Burkhardt U., Chen Q., Doherty S. J., Freeman S., Forster P. M., Fuglestvedt J., Gettelman A., De León R. R., Lim L. L., Lund M. T., Millar R. J., Owen B., Penner J. E., Pitari G., Prather M. J., Sausen R. and Wilcox L. J., “The Contribution of Global Aviation to Anthropogenic Climate Forcing for 2000 to 2018,” Atmospheric Environment, Vol. 244, Jan. 2021, Paper 117834. https://doi.org/10.1016/j.atmosenv.2020.117834 CrossrefGoogle Scholar[6] Grewe V., Dahlmann K., Flink J., Frömming C., Ghosh R., Gierens K., Heller R., Hendricks J., Jöckel P., Kaufmann S., Kölker K., Linke F., Luchkova T., Lührs B., van Manen J., Matthes S., Minikin A., Niklaß M., Plohr M., Righi M., Rosanka S., Schmitt A., Schumann U., Terekhov I., Unterstrasser S., Vazquez-Navarro M., Voigt C., Wicke K., Yamashita H., Zahn A. and Ziereis H., “Mitigating the Climate Impact from Aviation: Achievements and Results of the DLR WeCare Project,” Aerospace, Vol. 44, No. 3, 2017, pp. 1–50. https://doi.org/10.3390/aerospace4030034 Google Scholar[7] Irvine E. A., Hoskins B. J. and Shine K. P., “The Dependence of Contrail Formation on the Weather Pattern and Altitude in the North Atlantic,” Geophysical Research Letters, Vol. 39, No. 12, 1998, pp. 1–17. https://doi.org/10.1029/2012GL051909 Google Scholar[8] Frömming C., Grewe V., Brinkop S., Jöckel P., Haslerud A., Rosanka S., van Manen J. and Matthes S., “Influence of Weather Situation on Non-CO2 Aviation Climate Effects: the REACT4C Climate Change Functions,” Atmospheric Chemistry and Physics, Vol. 21, No. 11, 2021, pp. 9151–9172. https://doi.org/10.5194/acp-21-9151-2021 CrossrefGoogle Scholar[9] Rosanka S., Frömming C. and Grewe V., “The Impact of Weather Patterns and Related Transport Processes on Aviation’s Contribution to Ozone and Methane Concentrations from NOx Emissions,” Atmospheric Chemistry and Physics, Vol. 20, No. 20, 2020, pp. 12,347–12,361. https://doi.org/10.5194/acp-20-12347-2020 CrossrefGoogle Scholar[10] Spichtinger P., Gierens K., Leiterer U. and Dier H., “Ice Supersaturation in the Tropopause Region over Lindenberg, Germany,” Meteorologische Zeitschrift, Vol. 12, No. 3, 2003, pp. 143–156. https://doi.org/10.1127/0941-2948/2003/0012-0143 CrossrefGoogle Scholar[11] Jensen E. J., Toon O. B., Tabazadeh A., Sachse G. W., Anderson B. E., Chan K. R., Twohy C. W., Gandrud B., Aulenbach S. M., Heymsfield A., Hallett J. and Garry B., “Ice Nucleation Processes in Upper Tropospheric Wave-Clouds During SUCCESS,” Geophysical Research Letters, Vol. 25, No. 9, May 1998, pp. 1363–1366. https://doi.org/10.1029/98GL00299 CrossrefGoogle Scholar[12] Ovarlez J., van Velthoven P., Sachse G., Vay S., Schalger H. and Overlez H., “Comparison of Water Vapor Measurements from POLINAT 2 with ECMWF Analyses in High Humidity Conditions,” Journal of Geophysical Research, Vol. 105, No. D3, Feb. 2005, pp. 3737–3744. 10.1029/1999 JD900954 CrossrefGoogle Scholar[13] Vay S. A., Anderson B. E., Jensen E. J., Sachse G. W., Ovarlez J., Gregory G. L., Nolf S. R., Podolske J. R., Slate T. A. and Sorensen C. E., “Tropospheric Water Vapor Measurements over the North Atlantic During the Subsonic Assessment Ozone and Nitrogen Oxide Experiment (SONEX),” Journal of Geophysical Research, Vol. 105, No. D3, Feb. 2005, pp. 3745–3755. 10.1029/1999 JD901019 CrossrefGoogle Scholar[14] Mannstein H., Spichtinger P. and Gierens K., “A Note on How to Avoid Contrail Cirrus,” Transport Research Part D, Vol. 10, No. 5, Sept. 2005, pp. 421–426. https://doi.org/10.1016/j.trd.2005.04.012 CrossrefGoogle Scholar[15] Lührs B., Niklaß M., Frömming C., Grewe V. and Gollnick V., “Cost-Benefit Assessment of 2D and 3D Climate and Weather Optimized Trajectories,” AIAA Aviation Technology, Integration, and Operations Conference, AIAA Paper 2016-3758, 2016. https://doi.org/10.2514/6.2016-3758 LinkGoogle Scholar[16] Lührs B., Niklaß M., Frömming C., Grewe V. and Gollnick V., “Cost-Benefit Assessment of Climate and Weather Optimized Trajectories for Different North Atlantic Weather Patterns,” ICAS, Vol. 31, June 2018, pp. 1–10. Google Scholar[17] Lührs B., Linke F., Matthes S., Grewe V. and Yin F., “Climate Impact Mitigation Potential of European Air Traffic in a Weather Situation with Strong Contrail Formation,” Aerospace, Vol. 8, No. 50, 2021, pp. 1–14. https://doi.org/10.3390/aerospace8020050 Google Scholar[18] Niklaß M., Lührs B., Dahlmann K., Frömming C., Grewe V. and Gollnick V., “Cost-Benefit Assessment of Climate-Restricted Airspaces as an Interim Climate Mitigation Option,” Journal of Air Transportation, Vol. 25, No. 2, 2017, pp. 27–38. https://doi.org/10.2514/1.D0045 LinkGoogle Scholar[19] Niklaß M., Lührs B., Grewe V., Dahlmann K., Luchkova T., Linke F. and Gollnick V., “Potential to Reduce the Climate Impact of Aviation by Climate Restricted Airspaces,” Transport Policy, Vol. 83, Nov. 2019, pp. 102–110. https://doi.org/10.1016/j.tranpol.2016.12.010 CrossrefGoogle Scholar[20] Niklaß M., Grewe V., Gollnick V. and Dahlmann K., “Concept of Climate-Charged Airspaces: a Potential Policy Instrument for Internalizing Aviation’s Climate Impact of Non-CO2 Effects,” Climate Policy, Vol. 21, No. 8, 2021, pp. 1–20. https://doi.org/10.1080/14693062.2021.1950602 CrossrefGoogle Scholar[21] Matthes S., Grewe V., Dahlmann K., Frömming C., Irvine E., Lim L., Linke F., Lührs B., Owen B., Shine K., Stromatas S., Yamashita H. and Yin F., “A Concept for Multi-Criteria Environmental Assessment of Aircraft Trajectories,” Aerospace, Vol. 4, No. 42, 2017, pp. 1–25. https://doi.org/10.3390/aerospace4030042 Google Scholar[22] Matthes S., Lührs B., Dahlmann K., Grewe V., Linke F., Yin F., Klingman E. and Shine K., “A Concept for Multi-Criteria Environmental Assessment of Aircraft Trajectories,” Aerospace, Vol. 7, No. 126, 2020, pp. 1–25. https://doi.org/10.3390/aerospacexx010005 Google Scholar[23] Grewe V., Champougny T., Matthes S., Frömming C., Brinkop V., Søvde O., Irvine E. A. and Halscheidt L., “Reduction of the Air Traffic’s Contribution to Climate Change: A REACT4C Case Study,” Atmospheric Environment, Vol. 94, Sept. 2014, pp. 616–625. https://doi.org/10.1016/j.atmosenv.2014.05.059 CrossrefGoogle Scholar[24] Grewe V., Frömming C., Matthes S., Brinkop V., Ponater M., Dietmüller S., Jöckel P., Tsati E. and Dahlmann K., “Aircraft Routing with Minimal Climate Impact: The REACT4C Cost Function Modelling Approach,” Geoscientific Model Development Discussions, Vol. 7, No. 1, 2014, pp. 175–201. https://doi.org/10.5194/gmd-7-175-2014 CrossrefGoogle Scholar[25] Yamashita H., Yin F., Grewe V., Jöckel P., Sigrun M., Kern B., Dahlmann K. and Frömming C., “Newly Developed Aircraft Routing Options for Air Traffic Simulation in the Chemistry-Climate Model EMAC 2.53: AirTraf 2.0,” Geoscientific Model Development, Vol. 13, No. 10, 2020, pp. 4869–4890. https://doi.org/10.5194/gmd-13-4869-2020 CrossrefGoogle Scholar[26] Teoh R., Schumann U., Majumdar A. and Stettler M. E. J., “Mitigating the Climate Forcing of Aircraft Contrails by Small-Scale Diversions and Technology Adoption,” Environmental Science Technology, Vol. 54, No. 5, 2020, pp. 2941–2950. https://doi.org/10.1021/acs.est.9b05608 CrossrefGoogle Scholar[27] Pornet C., Gologan C., Vratny P. C., Seitz A., Schmitz O., Isikveren A. T. and Hornung M., “Methodology for Sizing and Performance Assessment of Hybrid Energy Aircraft,” Journal of Aircraft, Vol. 52, No. 1, 2015, pp. 341–352. https://doi.org/10.2514/1.C032716 LinkGoogle Scholar[28] Atanasov G. and Silberhorn D., “Hybrid Aircraft for Improved Off-Design Performance and Reduced Emissions,” AIAA Scitech 2020 Forum, AIAA Paper 2020-0753, 2020. https://doi.org/10.2514/6.2020-0753 LinkGoogle Scholar[29] Wroblewski G. E. and Ansell P. J., “Mission Analysis and Emissions for Conventional and Hybrid-Electric Commercial Transport Aircraft,” Journal of Aircraft, Vol. 56, No. 3, 2019, pp. 1200–1213. https://doi.org/10.2514/1.C035070 LinkGoogle Scholar[30] de Vries R., Brown M. and Vos R., “Preliminary Sizing Method for Hybrid-Electric Distributed-Propulsion Aircraft,” Journal of Aircraft, Vol. 56, No. 6, 2019, pp. 2172–2188. https://doi.org/10.2514/1.C035388 LinkGoogle Scholar[31] Finger D. F., Braun C. and Bill C., “Comparative Assessment of Parallel-Hybrid-Electric Propulsion Systems for Four Different Aircraft,” Journal of Aircraft, Vol. 57, No. 5, 2020, pp. 843–853. https://doi.org/10.2514/1.C035897 LinkGoogle Scholar[32] Isikveren A. T., “Method of Quadrant-Based Algorithmic Nomographs for Hybrid/Electric Aircraft Predesign,” Journal of Aircraft, Vol. 55, No. 1, Jan. 2018, pp. 396–405. https://doi.org/10.2514/1.C034355 LinkGoogle Scholar[33] Nuic A. and Mouillet V., “User Manual for the Base of Aircraft Data (BADA) Family 4,” ECC Technical/Scientific Rept. 12/11/22-58, Eurocontrol, Brussels, Belgium, 2012. Google Scholar[34] Jelinek F., Carlier S. and Smith J., “Advanced Emission Model (AEM3) v1.5—Validation Report,” EEC Rept. EEC/SEE/2004/004, Eurocontrol, Brussels, Belgium, 2004. Google Scholar[35] Dubois D. and Paynter G., “ ‘Fuel Flow Method 2’ for Estimating Aircraft Emissions,” Society of Automotive Engineers (SAE), SAE TP 2006-01-1987, 2006. Google Scholar[36] van Manen J. and Grewe V., “Algorithmic Climate Change Functions for the Use in Eco-Efficient Flight Planning,” Transportation Research Part D: Transport and Environment, Vol. 67, Feb. 2019, pp. 388–405. https://doi.org/10.1016/j.trd.2018.12.016 CrossrefGoogle Scholar[37] Niklaß M., Linke F., Dahlmann K., Grewe V., Matthes S., Plohr M., Maertens S., Wozny F. and Scheelhaase J., “Decision Parameters of an MRV Scheme for Integrating Non-CO2 Aviation Effects into EU ETS,” Climate Change, 2022. Google Scholar[38] Yin F., Grewe V., Gierens K., Linke F., Lau A., Niklaß M., Potthast R., Beckmann B., Keckhut P., Lagrave P.-Y., Celike A., Raper D., Roetger T., Matthes S. and Blakey S., “Research Towards Weather Induced Uncertainties for Contrail Persistence and Mitigation Strategies for Contrail Impact,” International Conference on Transport, Atmosphere and Climate, Vol. 5, June 2022. Google Scholar[39] Fuglestvedt J. S., Shine K. P., Berntsen T., Cook J., Lee D. S., Stenke A., Skeie R. B., Velders G. J. M. and Waitz I. A., “Transport Impacts on Atmosphere and Climate: Metrics,” Atmospheric Environment, Vol. 44, No. 37, 2010, pp. 4648–4677. https://doi.org/10.1016/j.atmosenv.2009.04.044 CrossrefGoogle Scholar[40] Grewe V. and Dahlmann K., “How Ambiguous Are Climate Metrics? And Are We Prepared to Assess and Compare the Climate Impact of New Air Traffic Technologies?” Atmospheric Environment, Vol. 106, 2015, pp. 373–374. CrossrefGoogle Scholar Previous article Next article FiguresReferencesRelatedDetails What's Popular Volume 60, Number 1January 2023 CrossmarkInformationCopyright © 2022 by the authors. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-3868 to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. PDF Received10 January 2022Accepted18 July 2022Published online12 September 2022
更多
查看译文
关键词
Hybrid Electric Aircraft,Contrails,Electric Propulsion,Numerical Weather Forecasting,Base of Aircraft Data,Aircraft Design Process,Cruise Altitude,Aircraft Performance,Electric Motors,Fuel Consumption
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要