Chrome Extension
WeChat Mini Program
Use on ChatGLM

Experimental study and modeling of denitrification in an MBBR reactor

International Journal of Chemical Reactor Engineering(2022)

Cited 1|Views3
No score
Abstract
Abstract A denitrification mathematical model was used to describe the nitrates and organic carbons use by the denitrify biomass in the Moving Bed Biofilm Reactor (MBBR). The model integrates the diffusive mass transfer mechanism as well as double substrates Monod kinetics. Preliminary experiments were realized in order to assess the operating conditions for growth of attached biomass, the determination of the optimal (COD/NO3-N) ratio, moreover the results of the previous study of the residence time distribution in this MBBR established the optimal hydrodynamic operating conditions with a dead volume of 22%. In this reactor, seeded with a mixed liquor from a purification station, kaldnesk1 were used as carriers. A total of 6 kinetic and stoichiometric constants under anoxic conditions were determined by batch-test pulsed respirometry; some parametric have been determined experimentally, such as YHD, YNO, μ ˆ HD ${\widehat{\mu }}_{\text{HD}}$ and KS, and with their values 0.4 mgCOD (mgCOD)−1, 0.6 mg COD (mgCOD)−1,0.864 d−1 and 12.48 mg COD L −1, respectively. The other constants were determined using the model fitting (using MATLAB), such as KNO3 and bHD with its values, 0.25 mg NO3-N. L−1 and 0.061 d−1, respectively. The model was used to simulated different operating condition and the results included the concentration profiles of NO3-N, COD and XBH, which showed good agreement with the experimental ones, mainly by using the effective volume determined experimentally in the hydrodynamic study (RTD test) and which can reach 62% of the total volume under some operating. Additionally, these findings demonstrate that moving bed reactor characterization may be accomplished using in situ pulsed respirometry (MBBR).
More
Translated text
Key words
denitrification, kinetic constants, mathematical model, pulse respirometry
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined