Neural mass model-based study of frontal-temporal theta oscillations in human subjects during the performance of a cognitive control task.

Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)(2022)

引用 0|浏览0
暂无评分
摘要
Cognitive control, the ability to rapidly shift one's attention and behavioral strategy in response to environmental changes, is often compromised across psychiatric disorders. One of the well-validated behavioral paradigms for tapping into the cognitive control circuits is a cognitive interference task, where subjects must suppress a natural response to follow a less intuitive rule. Slower response times on these tasks indicate difficulty exerting control to overcome response conflict. Conflict evokes robust electrophysiological signatures, such as theta (4-8 Hz) oscillations in the prefrontal cortex (PFC). However, the underlying neural mechanisms of conflict-evoked theta oscillations in the PFC are not clear. The objective of this work is to use a neural mass model (NMM) to find feasible cortical networks generating theta oscillations during conflict processing in human subjects. We used intracranial EEG (iEEG) recorded from dorsolateral PFC (dIPFC) and lateral temporal lobe (LTL) of human subjects with intractable epilepsy undergoing invasive monitoring, while they performed a multi-source interference task (MSIT). We used a dynamic causal modeling (DCM) framework to simulate dIPFC-LTL theta using a Jansen-Rit NMM. We found significant evidence for an LTL input into the dlPFC during the initial 500 ms of conflict processing compared to a bidirectional connection between the dlPFC and LTL. We conclude that a neural mass modeling framework can be used to elucidate candidate mechanisms of neural oscillations underlying conflict resolution in human subjects. Clinical Relevance- This can be used to find feasible target mechanisms for designing therapy in patients with compromised cognitive control. This framework can also be expanded to serve as an in-silico test bed for designing and testing neuromodulatory interventions such as electrical stimulation for improving cognitive control in mood/anxiety disorders.
更多
查看译文
关键词
Attention,Cognition,Humans,Prefrontal Cortex,Reaction Time,Research Subjects
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要