Cohesive strength and fracture toughness of atmospheric ice

Cold Regions Science and Technology(2022)

Cited 2|Views1
No score
Abstract
This paper aims at defining key mechanical properties of atmospheric ice in order to improve the design of mechanical de-icing systems. Based on ice fracture mechanisms, the parameters of interest are the cohesive strength of the ice and its fracture toughness. An hybrid experimental/numerical vibrating method is used to measure those critical values. Parameters such as temperature and precipitation rate influence the ice density and ice samples are thus defined with respect to this parameter. First the cohesive strength of ice is measured over the entire range of ice density and a polynomial expression of the cohesive strength of ice is given as a function of this density. Then the fracture toughness is measured for a smaller range of density and an average critical value is given. Finally, the influence of the properties computed are discussed to assess the conditions of atmospheric ice mechanical removal and the challenges for the design of mechanical ice protection systems. The study tends to show that as its density decreases, ice is more difficult to remove mechanically.
More
Translated text
Key words
Atmospheric ice,Tensile strength,Fracture toughness,Density Cold room,Experimental,Numerical model,Vibration test
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined