Effective Connectivity in Spinal Cord Injury-Induced Neuropathic Pain

SENSORS(2022)

Cited 0|Views5
No score
Abstract
Aim: The aim of this study was to differentiate the effects of spinal cord injury (SCI) and central neuropathic pain (CNP) on effective connectivity during motor imagery of legs, where CNP is typically experienced. Methods: Multichannel EEG was recorded during motor imagery of the legs in 3 groups of people: able-bodied (N = 10), SCI with existing CNP (N = 10), and SCI with no CNP (N = 20). The last group was followed up for 6 months to check for the onset of CNP. Source reconstruction was performed to obtain cortical activity in 17 areas spanning sensorimotor regions and pain matrix. Effective connectivity was calculated using the directed transfer function in 4 frequency bands and compared between groups. Results: A total of 50% of the SCI group with no CNP developed CNP later. Statistically significant differences in effective connectivity were found between all groups. The differences between groups were not dependent on the frequency band. Outflows from the supplementary motor area were greater for the able-bodied group while the outflows from the secondary somatosensory cortex were greater for the SCI groups. The group with existing CNP showed the least differences from the able-bodied group, appearing to reverse the effects of SCI. The connectivities involving the pain matrix were different between able-bodied and SCI groups irrespective of CNP status, indicating their involvement in motor networks generally. Significance: The study findings might help guide therapeutic interventions targeted at the brain for CNP alleviation as well as motor recovery post SCI.
More
Translated text
Key words
spinal cord injury, central neuropathic pain, motor imagery, EEG, source reconstruction, effective connectivity
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined