INFLUENCE OF GRAIN SIZE ON αʹCr PRECIPITATION IN AN ISOTHERMALLY AGED Fe-21Cr-5Al ALLOY

Materialia(2024)

引用 0|浏览9
暂无评分
摘要
Cr-rich αʹprecipitation during aging typically leads to hardening and accordingly embrittlement of FeCrAl alloys, which needs to be suppressed. The influence of grain size on αʹprecipitation was studied by aging coarse-grained (CG), ultra-fine grained (UFG), and nanocrystalline (NC) ferritic Kanthal-D [KD; Fe-21Cr-5Al (wt.%) alloy] at 450, 500 and 550 °C for 500h. After aging at 450 and 500 °C, less hardening was observed in the UFG KD than in CG KD. Atom probe tomography indicated a lower number density and larger sized intragranular αʹ in the UFG versus the CG alloy. The smaller grain size and higher defect (vacancy and dislocation) density in the UFG KD facilitated diffusion and accordingly enhanced precipitation kinetics, leading to coarsening of precipitates, as well as saturation of precipitation at lower temperatures, as compared to those in CG KD. No hardening occurred in UFG and CG KD after aging at 550 °C, indicating that the miscibility gap is between 500 and 550 °C. NC KD exhibited softening after aging owing to grain growth. αʹprecipitation occurred in NC KD aged at 450 °C but not at 500 °C, indicating that miscibility gap is between 450 and 500 °C. Thus, the significantly smaller grain size in NC KD decreased the miscibility gap, as compared to that in CG and UFG KD. This is attributed to the absorption of vacancies by migrating grain boundaries during aging, suppressing αʹ nucleation and enhancing Cr solubility.
更多
查看译文
关键词
alloy,grain size
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要