Functional imaging and targeted drug delivery in mice and patient tumors with a cell nucleolus-localizing and tumor-targeting peptide.

Biomaterials(2022)

引用 4|浏览11
暂无评分
摘要
Tumor-targeting peptides have profound clinical implications in early detection and delineation of microscopic lesions for surgical resection, and also delivery of therapeutics with reduced systemic toxicity. Here, we demonstrate that a peptide (RS), evolved from a previously reported hepatocellular carcinoma (HCC)-targeting peptide P47, enables improved HCC micrometastasis discrimination and delineation from noncancerous tissues in murine orthotopic mice and patient biopsies, with up to 21-fold contrast. Importantly, RS targets non-small cell lung (NSCLC) and colon cancers in mice and patient biopsies, with higher selectivity for highly proliferative tumor nodules. Moreover, RS localizes to cell nucleoli of HCC, NSCLC, breast, colon and cervical cancer cells and induces nucleolar stress when conjugated with chemotherapeutic Oxaliplatin (OXA) (RS-OXA), demonstrating both cellular and subcellular targeting. RS-delivered OXA elicits significant tumor retardation in orthotopic HCC mice with markedly reduced systemic toxicity compared to OXA alone. Injection of fluorescence-labeled RS enables dynamic visualization of tumor growth in RS-OXA-treated subcutaneous HCC mice. Our study demonstrates that RS targets a spectrum of tumors and localizes to cell nucleolus, thus enabling functional imaging and targeted delivery of OXA in HCC mice, and consequently provides a versatile tool for tumor imaging and targeted therapeutics.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要