Improve biomechanical stability using intramedullary nails with femoral neck protection in femoral shaft fractures

Computer Methods and Programs in Biomedicine(2022)

Cited 0|Views1
No score
Abstract
Background and objective Elderly patients treated for femoral shaft fractures have a higher risk of hip fracture. We hypothesized that intramedullary nails protecting the femoral neck can improve mechanical strength and reduce the risk of subsequent hip fracture. This study aims to analyze the biomechanical stability using intramedullary nails with or without femoral neck protection through finite element analysis. Methods Thirty finite element models (FEMs) were established, including five different conditions of femoral shaft fracture: Fracture healing, Proximal fractures (Transverse and oblique), Distal fractures (Transverse and oblique), and five different fixation methods. Femoral neck protection groups: cephalomedullary nail (CN), reconstruction nail (RN); No femoral neck protection groups: type-1 of antegrade intramedullary nail (AIN-1), type-2 of antegrade intramedullary nail (AIN-2), and retrograde intramedullary nail (RIN). The maximum stress of bone and internal fixation in the femoral neck region for all type of fixation were calculated to evaluate the biomechanical stability. Results Maximum equivalent stress values of bone in the femoral neck region for five different conditions of femoral shaft fracture: AIN-2 (77.23 MPa) >RIN (77.15 MPa) > AIN-1 (76.71 MPa) > CN (60.74 MPa) > RN (57.66 MPa) for the fracture healing; RIN (80.05 MPa) > AIN-1 (79.15 MPa) > AIN-2(78.77 MPa) > RN (65.16 MPa) > CN (65.03 MPa) for the proximal transverse fracture; RIN (80.10 MPa) > AIN-2 (79.36 MPa) > AIN-1 (79.18 MPa) > RN (65.09 MPa) > CN (64.96 MPa) for the proximal oblique fracture; RIN (80.24 MPa) > AIN-2 (79.68 MPa) > AIN-1 (79.33 MPa) > CN (65.02 MPa) > RN (64.76 MPa) for the distal transverse fracture; RIN (80.23 MPa) > AIN-2 (79.61 MPa) > AIN-1 (79.35 MPa) > CN (65.06 MPa) > RN (64.76 MPa) for the distal oblique fracture. Maximum equivalent stress of internal fixation in the femoral neck region is greater than the maximum stress of bone and avoids stress concentration of bone for the femoral neck protection groups (CN and RN). Conclusions Intramedullary nails with femoral neck protection in the treatment of femoral shaft fractures improve mechanical strength and prevent secondary hip fractures and decrease the overall risk of reoperation postoperatively.
More
Translated text
Key words
Intramedullary nail,Femoral neck protection,Femoral shaft fractures,Hip fracture,Finite element analysis
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined