Constructing Optimal Contraction Trees for Tensor Network Quantum Circuit Simulation

2022 IEEE High Performance Extreme Computing Conference (HPEC)(2022)

引用 2|浏览3
暂无评分
摘要
One of the key problems in tensor network based quantum circuit simulation is the construction of a contraction tree which minimizes the cost of the simulation, where the cost can be expressed in the number of operations as a proxy for the simulation running time. This same problem arises in a variety of application areas, such as combinatorial scientific computing, marginalization in probabilistic graphical models, and solving constraint satisfaction problems. In this paper, we reduce the computationally hard portion of this problem to one of graph linear ordering, and demonstrate how existing approaches in this area can be utilized to achieve results up to several orders of magnitude better than existing state of the art methods for the same running time. To do so, we introduce a novel polynomial time algorithm for constructing an optimal contraction tree from a given order. Furthermore, we introduce a fast and high quality linear ordering solver, and demonstrate its applicability as a heuristic for providing orderings for contraction trees. Finally, we compare our solver with competing methods for constructing contraction trees in quantum circuit simulation on a collection of randomly generated Quantum Approximate Optimization Algorithm Max Cut circuits and show that our method achieves superior results on a majority of tested quantum circuits. Reproducibility: Our source code and data are available at https://github.com/cameton/HPEC2022_ContractionTrees.
更多
查看译文
关键词
Contraction Tree,Tensor Network,Quantum Circuit Simulation,QAOA
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要