Dynamic Damping-Based Terminal Sliding Mode Event-Triggered Fault-Tolerant Pre-Compensation Stochastic Control for Tracked ROV

JOURNAL OF MARINE SCIENCE AND ENGINEERING(2022)

引用 2|浏览3
暂无评分
摘要
Due to the unknown disturbance caused by the harsh environment in deep water, the stability of Underwater Tracked Remotely Opreated Vehicle (UTROV) trajectory tracking control is affected; especially the resistance forces of random vibrations caused by non-differentiable random disturbance resistance, which has become one of the main problems in controller design. Considering engineering practice, a stochastic model and new dynamic damping-based terminal sliding mode event-triggered fault-tolerant controller were designed in this paper. Firstly, based on the random resistance pre-compensation theory for the first time, a stochastic model was designed for differential drive UTROV. Meanwhile, a new nonsingular terminal sliding mode and dynamic damping reaching law were designed to achieve global finite-time convergence and reduce chattering with better robust response speed. Furthermore, to deal with the wear and tear caused by actuator failure and fixed sampling rate transmission, a new dynamic event trigger mechanism was designed and the faults analyzed. On this basis, combined with the finite-time adaptive on-line estimation technology, it can not only better reduce the transmission frequency, but also the finite-time dynamic active fault-tolerant compensation. The control scheme has semi-globally finite-time stability in probability and is proved by theory, which is compliant with engineering requirements. Then, according to characteristics of innovation, the three groups of simulation of control methods are designed to compare the methods in this paper. Finally the advantages of the method are verified by simulation to achieve the design expectations.
更多
查看译文
关键词
fault-tolerant,terminal sliding mode,dynamic damping reaching law,dynamic event-trigger,fault coupling,actuator saturation,stochastic model
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要