A Comparative Study on X-ray Shielding and Mechanical Properties of Natural Rubber Latex Nanocomposites Containing Bi2O3 or BaSO4: Experimental and Numerical Determination

POLYMERS(2022)

引用 3|浏览4
暂无评分
摘要
This work experimentally determined the X-ray shielding and morphological, density, and tensile properties of sulfur-vulcanized natural rubber latex (SVNRL) nanocomposites containing varying content of nano-Bi2O3 or nano-BaSO4 from 0 to 200 phr in 100 phr increments, with modified procedures in sample preparation to overcome the insufficient strength of the samples found in other reports. The experimental X-ray shielding results, which were numerically verified using a web-based software package (XCOM), indicated that the overall X-ray attenuation abilities of the SVNRL nanocomposites generally increased with increasing filler content, with the 0.25-mm-thick SVNRL films containing 200 phr of the filler providing the highest overall X-ray shielding properties, as evidenced by the highest values of lead equivalence (Pb-eq) of 0.0371 mmPb and 0.0326 mmPb in Bi2O3/SVNRL nanocomposites, and 0.0326 mmPb and 0.0257 mmPb in BaSO4/SVNRL nanocomposites, for 60 kV and 100 kV X-rays, respectively. The results also revealed that the addition of either filler increased the tensile modulus at 300% elongation (M300) and density but decreased the tensile strength and the elongation at break of the Bi2O3/SVNRL and BaSO4/SVNRL nanocomposites. In addition, the modified procedures introduced in this work enabled the developed nanocomposites to acquire sufficient mechanical and X-ray shielding properties for potential use as medical X-ray protective gloves, with the recommended content of Bi2O3 and BaSO4 being in the range of 95-140 phr and 105-120 phr, respectively (in accordance with the requirements outlined in ASTM D3578-19 and the value of Pb-eq being greater than 0.02 mmPb). Consequently, based on the overall outcomes of this work, the developed Bi2O3/SVNRL and BaSO4/SVNRL nanocomposites show great potential for effective application in medical X-ray protective gloves, while the modified procedures could possibly be adopted for large-scale production.
更多
查看译文
关键词
natural rubber latex,Bi2O3,BaSO4,X-ray shielding,gloves,mechanical properties
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要