Protein profiling of testicular tissue from boars with different levels of hyperactive sperm motility

Acta Veterinaria Scandinavica(2022)

引用 0|浏览11
暂无评分
摘要
Hyperactive sperm motility is important for successful fertilization. In the present study, a proteome profiling approach was performed to identify the differences between Landrace boars with different levels of hyperactive sperm motility in liquid extended semen. Two contrasts were studied: (i) high versus low levels of sperm hyperactivity at semen collection day and (ii) high versus low change in levels of sperm hyperactivity after 96 h semen storage. Testicular samples were analyzed on a Q Exactive mass spectrometer and more than 6000 proteins were identified in the 13 samples. The most significant differentially expressed proteins were mediator complex subunit 28 (MED28), cell division cycle 37 like 1 (CDC37L1), ubiquitin specific peptidase 10 (USP10), zinc finger FYVE-type containing 26 (ZFYVE26), protein kinase C delta (PRKCD), actinin alpha 4 (ACTN4), N (alpha)-acetyltransferase 30 (NAA30), C1q domain-containing (LOC110258309) and uncharacterized LOC100512926. Of the differentially expressed proteins, 11 have previously been identified as differentially expressed at the corresponding mRNA transcript level using the same samples and contrasts. These include sphingosine kinase 1 isoform 2 (SPHK1), serine and arginine rich splicing factor 1 (SRSF1), and tubulin gamma-1 (TUBG1) which are involved in the acrosome reaction and sperm motility. A mass spectrometry approach was applied to investigate the protein profiles of boars with different levels of hyperactive sperm motility. This study identified several proteins previously shown to be involved in sperm motility and quality, but also proteins with no known function for sperm motility. Candidates that are differentially expressed on both mRNA and protein levels are especially relevant as biological markers of semen quality.
更多
查看译文
关键词
Pig,Proteome,Sperm hyperactivity,Sperm motility
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要