Strong light-matter interaction with self-hybridized bound states in the continuum in monolithic van der Waals metasurfaces

arxiv(2022)

引用 0|浏览12
暂无评分
摘要
Photonic bound states in the continuum (BICs) are a standout nanophotonic platform for strong light-matter coupling with transition metal dichalcogenides (TMDCs), but have so far mostly been employed as all-dielectric metasurfaces with adjacent TMDC layers, incurring limitations related to strain, mode overlap, and material integration. In this work, we experimentally demonstrate for the first time asymmetry-dependent BIC resonances in 2D arrays of monolithic metasurfaces composed solely of the nanostructured bulk TMDC WS$_2$ with BIC modes exhibiting sharp and tailored linewidths, ideal for selectively enhancing light-matter interactions. Geometrical variation enables the tuning of the BIC resonances across the exciton resonance in bulk WS$_2$, revealing the strong-coupling regime with an anti-crossing pattern and a Rabi splitting of 116 meV. The precise control over the radiative loss channel provided by the BIC concept is harnessed to tailor the Rabi splitting via a geometrical asymmetry parameter of the metasurface. Crucially, the coupling strength itself can be controlled and is shown to be independent of material-intrinsic losses. Our BIC-driven monolithic metasurface platform can readily incorporate other TMDCs or excitonic materials to deliver previously unavailable fundamental insights and practical device concepts for polaritonic applications.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要