Multistage-Responsive Gene Editing to Sensitize Ion-Interference Enhanced Carbon Monoxide Gas Therapy

SMALL(2022)

引用 5|浏览0
暂无评分
摘要
As a promising therapeutic modality targeting cancer, gas therapy still faces critical challenges, especially in enhancing therapeutic efficacy and avoiding gas poisoning risks. Here, a pH/glutathione (GSH) dual stimuli-responsive CRISPR/Cas9 gene-editing nanoplatform combined with calcium-enhanced CO gas therapy for precise anticancer therapy, is established. In the tumor microenvironment (TME), the fast biodegradation of the CaCO3 layer via pH-induced hydrolyzation allows glucose oxidase (GOx) to catalyze glucose for H2O2 production, which further reacts with manganese carbonyl (MnCO) and achieves the precise release of CO gas. Simultaneously, in situ Ca2+ overload from CaCO3 degradation disturbs mitochondrial Ca2+ homeostasis, resulting in Ca2+-driven reactive oxygen species (ROS) formation and subsequent mitochondrial apoptosis signaling pathway activation. Subsequently, by GSH-induced cleavage of a disulfide bond, the released Cas9/sgRNA (RNP) can achieve nuclear factor E2-related factor 2 (Nrf2) gene ablation to sensitize gas therapy by interfering with ROS signaling. This therapeutic modality endows codelivery of CRISPR, ions, and gas with smart control features, which demonstrates great potential for future clinical applications in precise nanomedicine.
更多
查看译文
关键词
CO gas therapy,gene editing,ion-interference therapy,reactive oxygen species (ROS)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要