A Novel HDAC1-Selective Inhibitor Attenuates Autoimmune Arthritis by Inhibiting Inflammatory Cytokine Production

BIOLOGICAL & PHARMACEUTICAL BULLETIN(2022)

Cited 1|Views6
No score
Abstract
Rheumatoid arthritis (RA) is systemic autoimmune arthritis that causes joint inflammation and destruction. Accumulating evidence has shown that inhibitors of class I histone deacetylases (HDACs) (i.e., HDAC1, 2, 3, and 8) are potential therapeutic candidates as targeted synthetic disease-modifying antirheumatic drugs (tsDMARDs). Nevertheless, the inhibition of class I HDACs has severe adverse effects because of their broad spectrum. We evaluated the therapeutic effect of a novel selective HDAC1 inhibitor TTA03-107 for collagen-induced arthritis (CIA) and collagen antibody-induced arthritis (CAIA) models in mice. We also examined the effect of TTA03-107 in bone marrow- derived macrophages (BMDMs) and T helper 17 (Th17) cells in vitro. Here, we delineate that TTA03-107 reduced the severity of autoimmune arthritis without obvious adverse effects in CIA and CAIA models. Moreover, TTA03-107 suppressed the production of inflammatory cytokines, such as interleukin (IL)-1 beta, tumor necrosis factor (TNF)-a, and IL-17A, in serum and joint tissue. In vitro treatment of BMDMs with TTA03-107 dampened the M1 differentiation and inflammatory cytokine production. TTA03-107 also suppressed the differentiation of Th17 cells. These results demonstrate that TTA03-107 can attenuate the development of arthritis in experimental RA models by inhibiting the differentiation and activation of macrophages and Th17 cells. Therefore, TTA03-107 is a potential tsDMARD candidate.
More
Translated text
Key words
histone deacetylase 1 inhibitor, rheumatoid arthritis, collagen-induced arthritis, collagen anti-body-induced arthritis, macrophage, T helper 17 cell
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined