Evaluation of bacterial agent/nitrate coupling on enhancing sulfur conversion and bacterial community succession during aerobic composting.

Bioresource technology(2022)

Cited 16|Views6
No score
Abstract
This study evaluated the coupling effects of sodium nitrate (SN) and sulfur-oxidizing bacterial agent (BA) on oxidizing reduced-state sulfur and altering the bacteria community in SN, BA, and SN + BA treatments, respectively. Results revealed that bacterial inoculation prolonged the thermophilic period, facilitated organics degradation and compost humification. Compared to the control group, SN + BA treatment reduced the cumulative H2S emissions and sulfur loss rate by 55.1 % and 15.7 %, respectively, and the nitrate reduction (used as electron donors) efficiency was enhanced by 7.8 % during the first week of composting. Bacterial inoculation altered the diversities and structure of the bacterial community by increasing the relative abundances of thermotolerant bacteria. Correlation analyses showed that the dominant phyla involved in nitrate-based sulfur-oxidizing reactions could be Firmicutes and Synergistota. These findings suggested the application viability of SN and BA to regulate the sulfur biotransformation and bacterial community in composting.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined