Myeloid- and Epithelial-Derived HBEGF Promotes Pulmonary Fibrosis.

American journal of respiratory cell and molecular biology(2022)

引用 4|浏览18
暂无评分
摘要
Idiopathic pulmonary fibrosis (IPF) is a poorly understood, progressive lethal lung disease with no known cure. In addition to alveolar epithelial cell (AEC) injury and excessive deposition of extracellular matrix proteins, chronic inflammation is a hallmark of IPF. Literature suggests that the persistent inflammation seen in IPF primarily consists of monocytes and macrophages. Recent work demonstrates that monocyte-derived alveolar macrophages (moAMs) drive lung fibrosis, but further characterization of critical moAM cell attributes is necessary. Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is an important EGFR (epidermal growth factor receptor) ligand that has essential roles in angiogenesis, wound healing, keratinocyte migration, and epithelial-mesenchymal transition. Our past work has shown HB-EGF is a primary marker of profibrotic M2 macrophages, and this study seeks to characterize myeloid-derived HB-EGF and its primary mechanism of action in bleomycin-induced lung fibrosis using Hbegff/f;Lyz2Cre+ mice. Here, we show that IPF patients and fibrotic mice have increased expression of HB-EGF and that lung macrophages and transitional alveolar epithelial cells of fibrotic mice and humans all express HB-EGF. We also show that Hbegff/f;Lyz2Cre+ mice are protected from bleomycin-induced fibrosis and that this protection is likely multifactorial, caused by decreased CCL2-dependent monocyte migration, decreased fibroblast migration, and decreased contribution of HB-EGF from AEC sources when HB-EGF is removed under the Lyz2Cre promoter.
更多
查看译文
关键词
alveolar epithelial cells,fibroblasts,fibrosis,hepain-binding epidermal growth factor-like growth factor (HB-EGF),monocyte-derived alveolar macrophage (moAM)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要