NASA’s starshade technology development activity

Space Telescopes and Instrumentation 2022: Optical, Infrared, and Millimeter Wave(2022)

Cited 0|Views9
No score
Abstract
The Astro2020 report recommended that NASA's next flagship have direct imaging of rocky, Earthlike exoplanets as its core science mission. At present, the starshade is the only high contrast imaging technique that has demonstrated broadband contrast at levels suitable for imaging exo-Earths in the laboratory. A starshade is an occulter positioned to cast a shadow of an exoplanet's host star onto the telescope aperture, and narrow enough that the nearby exoplanet remains visible to the telescope. The starshade has a precise shape tailored to suppress diffraction of the starlight into the shadow. Starshade-based observations also have other advantages compared to coronagraphic observations. These include: no effective limit to the outer working angle, higher throughput for the exoplanet light, dramatically simpler requirements on the telescope optics, and the ability to provide high contrast at ultraviolet wavelengths. These advantages come at the price of needing a separate spacecraft to fly the starshade in formation with the telescope, and the consequent costs in fuel and time required for stationkeeping and retargeting. We describe work being done to mature starshade technology to technology readiness level 5 (TRL 5) in NASA's S5 activity. This work includes optical measurements of a starshade's ability to suppress light at levels required for a flagship mission, laboratory demonstrations of position sensing and control methods for starshade formation flying, and manufacture and test of flight-like starshade mechanical assemblies that can deploy accurately and stably to the precise shape required for starlight suppression in space.
More
Translated text
Key words
starshades,exoplanets,high contrast imaging,technology
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined