谷歌浏览器插件
订阅小程序
在清言上使用

Recyclable Fe/S co-doped nanocarbon derived from metal-organic framework as a peroxymonosulfate activator for efficient removal of 2,4-dichlorophenol.

Environmental science and pollution research international(2022)

引用 0|浏览27
暂无评分
摘要
In this study, a recyclable Fe/S co-doped nanocarbon (Fe/S-NC) was successfully prepared by the pyrolysis of ZIF-8 confined with Fe(II) and added S. Characterization showed that a highly graphitized carbon-based material co-doped with sulfur and iron was successfully prepared. This Fe/S-NC can efficiently activate PMS to remove organic pollutants in water. The effect of different synthesis conditions on the degradation efficiency of 2,4-DCP was studied by orthogonal experiments. The optimized Fe/S-NC/PMS system exhibited excellent catalytic performance and could degrade more than 99.7% of 2,4-DCP within 30 min. Even after 5 cycles, the degradation efficiency could still be maintained above 96.3%, which proved that the catalytic system had good cycle performance. In addition, the effect of pH on catalytic performance showed that the degradation rate of 2,4-DCP exceeds 96.7% in the pH range of groundwater (pH = 5-9). We had confirmed that the free radicals that caused 2,4-DCP degradation were SO4·-, ·OH, O2·-, and 1O2, which played important roles in degrading organic pollutants. These research results show that the Fe/S-NC/PMS system can be used as an efficient, stable, and environmentally friendly system to treat organic pollutants in groundwater.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要