Assessment of the Carcinogenic Potential of Pretomanid in Transgenic Tg.rasH2 Mice

INTERNATIONAL JOURNAL OF TOXICOLOGY(2022)

引用 0|浏览1
暂无评分
摘要
Pretomanid is a nitroimidazooxazine antimycobacterial drug that was approved as part of a three-drug oral regimen, consisting of bedaquiline, pretomanid, and linezolid, for 6-months treatment of adults with pulmonary extensively drug-resistant tuberculosis or with complicated forms of multidrug-resistant tuberculosis by the food and drug administration in the United States and regulatory bodies in over 10 other countries. Nitroaromatic compounds as a class carry a risk of genotoxicity and potential carcinogenicity based on reactive metabolite formation. A battery of good laboratory practice genotoxicity studies on pretomanid indicated that the compound was not genotoxic, however its hydroxy imidazole metabolite (M50) was genotoxic in the Ames assay. To assess the in vivo carcinogenic potential of pretomanid, hemizygous Tg.rasH2 mice were administered pretomanid once daily by oral gavage for 26 weeks. Male mice were given pretomanid in vehicle at doses of 0, 5, 15 and 40 mg/kg/day and female mice were given pretomanid in vehicle at doses of 0, 10, 30 and 80 mg/kg/day. Positive control mice of both sexes received intraperitoneal injections of urethane at 1000 mg/kg on Days 1, 3 and 5. There were no pretomanid-related early deaths, tumors, non-neoplastic microscopic findings, or gross necropsy findings at any dose level. The positive control gave the anticipated response of lung tumors. Oral administration of pretomanid to mice produced plasma exposure to the parent compound (high dose AUC of pretomanid 3 times the clinical AUC at the maximum recommended human dose) and exposure to the M50 metabolite (less than 10% of pretomanid) at all dose levels in both sexes. These data show that pretomanid was not carcinogenic in a transgenic mouse model at systemic exposures greater than human therapeutic exposures.
更多
查看译文
关键词
PA-824, genotoxicity, carcinogenicity, nitroheterocyclic compound, Tg, rasH2 mice
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要