A wearable textile-based pneumatic energy harvesting system for assistive robotics

Science Advances(2022)

Cited 18|Views52
No score
Abstract
Wearable assistive, rehabilitative, and augmentative devices currently require bulky power supplies, often making these tools more of a burden than an asset. This work introduces a soft, low-profile, textile-based pneumatic energy harvesting system that extracts power directly from the foot strike of a user during walking. Energy is harvested with a textile pump integrated into the insole of the user's shoe and stored in a wearable textile bladder to operate pneumatic actuators on demand, with system performance optimized based on a mechano-fluidic model. The system recovered a maximum average power of nearly 3 W with over 20% conversion efficiency-outperforming electromagnetic, piezoelectric, and triboelectric alternatives-and was used to power a wearable arm-lift device that assists shoulder motion and a supernumerary robotic arm, demonstrating its capability as a lightweight, low-cost, and comfortable solution to support adults with upper body functional limitations in activities of daily living.
More
Translated text
Key words
pneumatic energy harvesting system,textile-based
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined