谷歌Chrome浏览器插件
订阅小程序
在清言上使用

Growth and Mechanical Characterization of Mycelium-Based Composites towards Future Bioremediation and Food Production in the Material Manufacturing Cycle

Thibaut Houette, Christopher Maurer, Remik Niewiarowski,Petra Gruber

BIOMIMETICS(2022)

引用 6|浏览2
暂无评分
摘要
Today's architectural and agricultural practices negatively impact the planet. Mycelium-based composites are widely researched with the aim of producing sustainable building materials by upcycling organic byproducts. To go further, this study analyzed the growth process and tested the mechanical behavior of composite materials grown from fungal species used in bioremediation. Agricultural waste containing high levels of fertilizers serves as the substrate for mycelium growth to reduce chemical dispersal in the environment. Compression and three-point bending tests were conducted to evaluate the effects of the following variables on the mechanical behavior of mycelium-based materials: substrate particle size (with or without micro-particles), fungal species (Pleurotus ostreatus and Coprinus comatus), and post-growth treatment (dried, baked, compacted then dried, and compacted then baked). Overall, the density of the material positively correlated with its Young's and elastic moduli, showing higher moduli for composites made from substrate with micro-particles and for compacted composites. Compacted then baked composites grown on the substrate with micro-particles provided the highest elastic moduli in compression and flexural testing. In conclusion, this study provides valuable insight into the selection of substrate particle size, fungal species, and post-growth treatment for various applications with a focus on material manufacturing, food production, and bioremediation.
更多
查看译文
关键词
mycelium, fungal architecture, myceliated material, living material, sustainability, biotechnology, compression, bending, waste upcycling, mycoremediation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要