Topological phase transitions at finite temperature

Physical Review Research(2022)

引用 1|浏览10
暂无评分
摘要
The ground states of noninteracting fermions in one-dimension with chiral symmetry form a class of topological band insulators, described by a topological invariant that can be related to the Zak phase. Recently, a generalization of this quantity to mixed states - known as the ensemble geometric phase (EGP) - has emerged as a robust way to describe topology at non-zero temperature. By using this quantity, we explore the nature of topology allowed for dissipation beyond a Lindblad description, to allow for coupling to external baths at finite temperatures. We introduce two main aspects to the theory of mixed state topology. First, we discover topological phase transitions as a function of the temperature T, manifesting as changes in winding number of the EGP accumulated over a closed loop in parameter space. We characterize the nature of these transitions and reveal that the corresponding non-equilibrium steady state at the transition can exhibit a nontrivial structure - contrary to previous studies where it was found to be in a fully mixed state. Second, we demonstrate that the EGP itself becomes quantized when key symmetries are present, allowing it to be viewed as a topological marker which can undergo equilibrium topological transitions at non-zero temperatures.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要