Time-reversal symmetry breaking in charge density wave of CsV$_3$Sb$_5$ detected by polar Kerr effect

arxiv(2023)

引用 11|浏览11
暂无评分
摘要
The Kagome lattice exhibits rich quantum phenomena owing to its unique geometric properties. Appealing realizations are the Kagome metals AV$_3$Sb$_5$ (A = K, Rb, Cs), where unconventional charge density wave (CDW) is intertwined with superconductivity and non-trivial band topology. Several experiments suggest that this CDW is a rare occurrence of chiral CDW characterized by orbital loop current. However, key evidences of loop current, spontaneous time-reversal symmetry-breaking (TRSB) and the coupling of its order parameter with the magnetic field remain elusive. Here, we investigate the CDW in CsV3Sb5 by magneto-optic polar Kerr effect with sub-microradian resolution. Under magnetic field, we observed a jump of the Kerr angle at the CDW transition. This jump is magnetic-field switchable and scales with field, indicating magneto--chirality coupling related to non-trivial band topology. At zero field, we found non-zero and field-trainable Kerr angle below CDW transition temperature, signaling spontaneous TRSB. Our results provide a crucial step to unveil quantum phenomena in correlated Kagome materials.
更多
查看译文
关键词
csv3sb5,charge density wave,time-reversal
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要