A Reanalysis of the Composition of K2-106b: an Ultra-short Period Super-Mercury Candidate

arxiv(2022)

引用 3|浏览6
暂无评分
摘要
We present a reanalysis of the K2-106 transiting planetary system, with a focus on the composition of K2-106b, an ultra-short period, super-Mercury candidate. We globally model existing photometric and radial velocity data and derive a planetary mass and radius for K2-106b of $M_{p} = 8.53\pm1.02~M_{\oplus}$ and $R_{p} = 1.71^{+0.069}_{-0.057}~R_{\oplus}$, which leads to a density of $\rho_{p} = 9.4^{+1.6}_{-1.5}$ $\rm g~cm^{-3}$, a significantly lower value than previously reported in the literature. We use planet interior models that assume a two-layer planet comprised of a liquid, pure Fe core and iron-free, $\rm MgSiO_{3}$ mantle, and we determine the range of core mass fractions that are consistent with the observed mass and radius. We use existing high-resolution spectra of the host star to derive Fe/Mg/Si abundances ([Fe/H]$=-0.03 \pm 0.01$, [Mg/H]$= 0.04 \pm 0.02$, [Si/H]$=0.03 \pm 0.06$) to infer the composition of K2-106b. We find that although K2-106b has a high density and core mass fraction ($44^{+12}_{-15}\%$) compared to the Earth ($33\%$), its composition is consistent with what is expected assuming that it reflects the relative refractory abundances of its host star. K2-106b is therefore unlikely to be a super-Mercury, as has been suggested in previous literature.
更多
查看译文
关键词
Exoplanet systems,Planetary interior
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要