Computational single-objective scanning light sheet (cSOLS)

APL PHOTONICS(2022)

引用 0|浏览6
暂无评分
摘要
Single-objective scanning light sheet (SOLS) imaging has fueled major advances in volumetric bioimaging because it supports low phototoxic, high-resolution imaging over an extended period. The remote imaging unit in the SOLS does not use a conventional epifluorescence image detection scheme (a single tube lens). In this paper, we propose a technique called the computational SOLS (cSOLS) that achieves light sheet imaging without the remote imaging unit. Using a single microlens array after the tube lens (lightfield imaging), the cSOLS is immediately compatible with conventional epifluorescence detection. The core of cSOLS is a Fast Optical Ray (FOR) model. FOR generates 3D imaging volume (40 x 40 x 14 mu m(3)) using 2D lightfield images taken under SOLS illumination within 0.5 s on a standard central processing unit (CPU) without multicore parallel processing. In comparison with traditional lightfield retrieval approaches, FOR reassigns fluorescence photons and removes out-of-focus light to improve optical sectioning by a factor of 2, thereby achieving a spatial resolution of 1.59 x 1.92 x 1.39 mu m(3). cSOLS with FOR can be tuned over a range of oblique illumination angles and directions and, therefore, paves the way for next-generation SOLS imaging. cSOLS marks an important and exciting development of SOLS imaging with computational imaging capabilities. (C) 2022 Author(s).All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY)license (http://creativecommons.org/licenses/by/4.0/).
更多
查看译文
关键词
light sheet,csols,single-objective
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要