Chrome Extension
WeChat Mini Program
Use on ChatGLM

High-glucose induced toxicity in HK-2 cells can be alleviated by inhibition of miRNA-320c

RENAL FAILURE(2022)

Cited 0|Views10
No score
Abstract
Diabetic nephropathy (DN) is a major healthcare challenge worldwide. MiRNAs exert a regulatory effect on the progress of DN. Our study proposed to investigate the miR-320c expression and its function on the pathogenesis of DN in vitro. The level of miR-320c in HK-2 cells was quantified by RT-qPCR. Cell morphology, invasion, and migration were observed by optical microscope, Transwell invasion assay, and scratch wound assay. Then, the levels of PTEN, alpha-SMA, vimentin, E-cadherin, p-PI3K, PI3K, AKT, and p-AKT were analyzed through western blotting. A Dual-luciferase reporter assay was conducted to explore the target relationship between miR-320c and PTEN. It was discovered that miR-320c was over-expressed in high glucose (HG)-treated HK-2 cells. Furthermore, inhibition of miR-320c could alleviate the epithelial-mesenchymal transition (EMT) of HG-induced HK-2 cells and retain the normal morphology of HK-2 cells. Additionally, the miR-320c inhibitor decreased the invasiveness and migration of HG-treated HK-2 cells. Next, the target gene of miR-320c, PTEN, was identified, and the function of miR-320c was reversed by down-regulation of PTEN. Finally, we found inhibition of miR-320c restrained the PI3K/AKT pathway. Therefore, inhibition of miR-320c could alleviate toxicity of HK-2 cells induced by HG via targeting PTEN and restraining the PI3K/AKT pathway, illustrating that miR-320c may act as a new biomarker in the diagnosis of DN.
More
Translated text
Key words
miR-320c,PTEN,PI3K,AKT,HK-2,diabetic nephropathy
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined