Trap-assisted formation of atom–ion bound states

Nature Physics(2023)

引用 1|浏览5
暂无评分
摘要
Pairs of free particles cannot form bound states in an elastic collision due to momentum and energy conservation. In many ultracold experiments, however, the particles collide in the presence of an external trapping potential that can couple their centre-of-mass and relative motions, assisting the formation of bound states. Here we report the observation of weakly bound molecular states formed between one ultracold atom and a single trapped ion in the presence of a linear Paul trap. We show that bound states can efficiently form in binary collisions, and enhance the rate of inelastic processes. By measuring the electronic spin-exchange rate, we study the dependence of these bound states on the collision energy and magnetic field, and extract the average molecular binding energy and mean lifetime of the molecule, having good agreement with molecular dynamics simulations. Our simulations predict a power-law distribution of molecular lifetimes with a mean that is dominated by extreme, long-lived events. The dependence of the molecular properties on the trapping parameters enables further studies on the characterization and control of ultracold collisions.
更多
查看译文
关键词
Atomic and molecular collision processes,Ultracold gases,Physics,general,Theoretical,Mathematical and Computational Physics,Classical and Continuum Physics,Atomic,Molecular,Optical and Plasma Physics,Condensed Matter Physics,Complex Systems
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要