Direct Non-oxidative Methane Coupling on Vitreous Silica Supported Iron Catalysts

Catalysis Today(2022)

引用 1|浏览2
暂无评分
摘要
Direct non-oxidative methane coupling (NMC) is one of the promising pathways for methane upgrading into value-added olefin and aromatic hydrocarbons. The silica-supported iron (i.e., Fe/SiO2) catalyst has been reported effective for NMC, but the effects of silica support on the catalyst property and NMC performance have rarely been explored. In this work, we prepared a vitreous silica-supported iron (Fe/SiO2-V) catalyst by flame fusion of a mixture of quartz silica and fayalite. The physicochemical properties and NMC performance of the as-prepared catalysts were measured. Compared to crystalline cristobalite support in Fe/SiO2 catalyst that has been studied previously, vitreous silica support has disordered Si-O bonds and structural defects, enabling better iron dispersion and more vital metal-support interaction. The as-prepared Fe/SiO2-V catalyst had a shorter induction period in methane activation and lower coke yield in NMC. The increase in iron concentration in Fe/SiO2-V catalysts elongated the catalyst induction period and promoted aromatics and coke formation. The coke type of the spent Fe/SiO2-V catalyst is more uniform than the cristobalite-supported iron catalyst.
更多
查看译文
关键词
Non-oxidative methane coupling,Natural gas,Flame fusion,Vitreous silica,Cristobalite
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要