Atomically Thin Synapse Networks on Van Der Waals Photo‐Memtransistors

Advanced Materials(2022)

引用 7|浏览14
暂无评分
摘要
A new type of atomically thin synaptic network on van der Waals (vdW) heterostructures is reported, where each ultrasmall cell (approximate to 2 nm thick) built with trilayer WS2 semiconductor acts as a gate-tunable photoactive synapse, i.e., a photo-memtransistor. A train of UV pulses onto the WS2 memristor generates dopants in atomic-level precision by direct light-lattice interactions, which, along with the gate tunability, leads to the accurate modulation of the channel conductance for potentiation and depression of the synaptic cells. Such synaptic dynamics can be explained by a parallel atomistic resistor network model. In addition, it is shown that such a device scheme can generally be realized in other 2D vdW semiconductors, such as MoS2, MoSe2, MoTe2, and WSe2. Demonstration of these atomically thin photo-memtransistor arrays, where the synaptic weights can be tuned for the atomistic defect density, provides implications for a new type of artificial neural networks for parallel matrix computations with an ultrahigh integration density.
更多
查看译文
关键词
nanotechnology,semiconductors,synaptic devices,van der Waals materials
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要