Machine learning prediction of glass transition temperature of conjugated polymers from chemical structure

Cell Reports Physical Science(2022)

引用 11|浏览7
暂无评分
摘要
Predicting the glass transition temperature (Tg) is of critical importance as it governs the thermomechanical performance of conjugated polymers (CPs). Here, we report a predictive modeling framework to predict Tg of CPs through the integration of machine learning (ML), molecular dynamics (MD) simulations, and experiments. With 154 Tg data collected, an ML model is developed by taking simplified “geometry” of six chemical building blocks as molecular features, where side-chain fraction, isolated rings, fused rings, and bridged rings features are identified as the dominant ones for Tg. MD simulations further unravel the fundamental roles of those chemical building blocks in dynamical heterogeneity and local mobility of CPs at a molecular level. The developed ML model is demonstrated for its capability of predicting Tg of several new high-performance solar cell materials to a good approximation. The established predictive framework facilitates the design and prediction of Tg of complex CPs, paving the way for addressing device stability issues that have hampered the field from developing stable organic electronics.
更多
查看译文
关键词
conjugated polymers,glass transition temperature,machine learning,molecular dynamics simulations,segmental dynamics,quasi-elastic neutron scattering
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要