谷歌Chrome浏览器插件
订阅小程序
在清言上使用

Heterogeneous catalytic oxidation of tetracycline hydrochloride based on persulfate activated by Fe3O4/MC composite

CHEMICAL ENGINEERING JOURNAL(2022)

引用 9|浏览6
暂无评分
摘要
In this study, a novel magnetic mesoporous carbon composite (Fe3O4/MC) was prepared by manganese carbonate (MnCO3) as the template to activate persulfate (PS) for tetracycline hydrochloride (TC) degradation. The characterization results showed that Fe3O4 nanoparticles were evenly distributed on the surface of MC, and Fe3O4/MC had the large surface area of 433.88 m(2).g(-1). When the initial TC concentration was 50 mg.L-1 , Fe3O4/MC dosage was 0.0336 g, PS dosage was 0.0476 g and the reaction temperature was 30 degrees C, Fe3O4/MC + PS system could degrade 92.9% of TC within 90 min. TC degradation efficiency increased with the increase of Fe3O4/MC dosage and temperature, but decreased with the increase of TC initial concentration and pH value. The increase of PS concentration first improved TC degradation efficiency, and then was not conducive to its degradation. The quenching experiments indicated that the sulfate radical (SO4 center dot(-)), superoxide radical (center dot O-2(-)) and singlet oxygen (O-1(2)) in Fe3O4/MC + PS system contributed to TC degradation. Meanwhile, the toxicity evaluation of the degradation products confirmed that the toxicity of TC in Fe3O4/MC + PS system was greatly reduced. Totally, this study systematically investigated the performance of the Fe3O4/MC + PS system for TC removal, laying a theoretical and practical foundation for treatment of potential antibiotic wastewater (ppm range) in the future.
更多
查看译文
关键词
Fe3O4, Mesoporous carbon, Catalytic degradation, Sulfate radical
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要