Improvement of Photophysical Properties of CsPbBr3 and Mn2+:CsPb(Br,Cl)(3) Perovskite Nanocrystals by Sr2+ Doping for White Light-Emitting Diodes

JOURNAL OF PHYSICAL CHEMISTRY C

引用 6|浏览0
暂无评分
摘要
All-inorganic metal halide perovskite nanocrystals (NCs) having the general formula ABX(3), where A is a monovalent cation, for example, Cs+, B is a divalent cation, typically Pb2+, and X is Cl-, Br-, I-, or their binary mixture, show potential in optoelectronic devices. In this work, we explore the effect of B-site doping on the optoelectronic properties of CsPbX3 NCs (X = Br, Cl). First, the Pb2+ ions in the pristine CsPbBr3 NC are partially substituted by Mn2+ ions. The alkaline earth metal strontium is then doped on both pristine and the Mn2+-substituted NCs. We found that a small percentage of Sr2+ doping remarkably improves the photoluminescence quantum yield of CsPbBr3 and Mn2+-state emission in Mn2+:CsPb(Br,Cl)(3) NCs. Perovskite NC film/ poly(methyl methacrylate) composites with all four NC variants were used in a white light-emitting diode (WLED), where Sr2+ doping increased the luminous efficiency of the WLED by similar to 4.7%. We attribute this performance enhancement to a reduced defect density and an attenuated microstrain in the local NC structure.
更多
查看译文
关键词
perovskite nanocrystals,cspbbr<sub>3</sub>,photophysical properties,light-emitting
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要