Inverse chaotic resonance in Hodgkin–Huxley neuronal system

EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS(2022)

引用 7|浏览6
暂无评分
摘要
Inverse chaotic resonance is a phenomenon in which the neuronal mean firing rate exhibits a minimum with respect to the chaotic activity. In this paper, the inverse chaotic resonance phenomenon is investigated in the case of a single Hodgkin–Huxley neuron and a Hodgkin–Huxley neuronal small-world network, respectively. It is found that the inverse chaotic resonance can be modulated by the neuronal excitation level, and the duration of the inverse chaotic resonance is longer near the excitation threshold. Furthermore, we investigated the effect of chaotic activity on the collective discharge behavior of the small-world network. We find that the emergence of inverse chaotic resonance depends on the interplay between each neuron’s excitation level, chaotic activity, and network inputs, where the latter in turn depend on types of synaptic currents. The inverse chaotic resonance effect is a robust phenomenon that is observed in both individual neurons and neuronal networks.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要