Effect of the microstructure on the corrosion behavior of dissimilar friction stir-welded 304 austenitic stainless steel and Q235 low-carbon steel joints

MATERIALS RESEARCH EXPRESS(2022)

引用 1|浏览2
暂无评分
摘要
To investigate the effect of the microstructure on the corrosion behavior of the dissimilar friction stir welded (FSW) joint between 304 stainless steel (SS304) and Q235 low-carbon steel, the microstructure of the joint in this work was characterized by optical microscopy, scanning electron microscopy (SEM), and electron backscatter diffraction. The corrosion behavior in different zones of the joint was evaluated by the electrochemical tests, and the corresponding corrosion morphologies were illustrated via SEM and laser confocal scanning microscopy. According to the results, plenty of low-angle grain boundaries (LAGBs) and a low proportion of twin boundaries (TBs) deteriorated the corrosion resistance on the SS304 side of the joint. The corrosion products of the SS304 side mainly included gamma-Fe2O3, FeCrO4, and Cr2O3, while those of the Q235 steel side were alpha-Fe2O3 and alpha-FeOOH. The corrosion mechanism in the stir zone (SZ) was galvanic corrosion between proeutectoid ferrite and pearlite on the Q235 steel side, during which the austenite remained uncorroded, whereas the proeutectoid ferrite, pearlite, and bainite were severely corroded. The above results indicated that the uniform distribution of mixed structures and a small area proportion of austenite (cathode) would improve the corrosion resistance in the SZ.
更多
查看译文
关键词
dissimilar steel, friction stir welding, microstructure, polarization, corrosion resistance
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要