Parameter Identification of Lithium Battery Model Based on Chaotic Quantum Sparrow Search Algorithm

APPLIED SCIENCES-BASEL(2022)

引用 3|浏览3
暂无评分
摘要
An accurate battery model is of great importance for battery state estimation. This study considers the parameter identification of a fractional-order model (FOM) of the battery, which can more realistically describe the reaction process of the cell and provide more precise predictions. Firstly, an improved sparrow search algorithm combined with the Tent chaotic mapping, quantum behavior strategy and Gaussian variation is proposed to regulate the early population quality, enhance its global search ability and avoid trapping into local optima. The effectiveness and superiority are verified by comparing the proposed chaotic quantum sparrow search algorithm (CQSSA) with the particle swarm optimization (PSO), genetic algorithm (GA), grey wolf optimization algorithm (GWO), Dingo optimization algorithm (DOA) and sparrow search algorithm (SSA) on benchmark functions. Secondly, the parameters of the FOM battery model are identified using six algorithms under the hybrid pulse power characterization (HPPC) test. Compared with SSA, CQSSA has 4.3%, 5.9% and 11.5% improvement in mean absolute error (MAE), root mean square error (RMSE) and maximum absolute error (MaAE), respectively. Furthermore, these parameters are used in the pulsed discharge test (PULSE) and urban dynamometer driving schedule (UDDS) test to verify the adaptability of the proposed algorithm. Simulation results show that the model parameters identified by the CQSSA algorithm perform well in terms of the MAE, RMSE and MaAE of the terminal voltages under all three different tests, demonstrating the high accuracy and good adaptability of the proposed algorithm.
更多
查看译文
关键词
battery, fractional-order model, parameter identification, sparrow search algorithm, chaotic mapping, quantum behavior
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要