INS/CNS/DNS/XNAV deep integrated navigation in a highly dynamic environment

AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY(2023)

引用 0|浏览7
暂无评分
摘要
Purpose This study aims to address the problem of the divergence of traditional inertial navigation system (INS)/celestial navigation system (CNS)-integrated navigation for ballistic missiles. The authors introduce Doppler navigation system (DNS) and X-ray pulsar navigation (XNAV) to the traditional INS/CNS-integrated navigation system and then propose an INS/CNS/DNS/XNAV deep integrated navigation system. Design/methodology/approach DNS and XNAV can provide velocity and position information, respectively. In addition to providing velocity information directly, DNS suppresses the impact of the Doppler effect on pulsar time of arrival (TOA). A pulsar TOA with drift bias is observed during the short navigation process. To solve this problem, the pulsar TOA drift bias model is established. And the parameters of the navigation filter are optimised based on this model. Findings The experimental results show that the INS/CNS/DNS/XNAV deep integrated navigation can suppress the drift of the accelerometer to a certain extent to improve the precision of position and velocity determination. In addition, this integrated navigation method can reduce the required accuracy of inertial navigation, thereby reducing the cost of missile manufacturing and realising low-cost and high-precision navigation. Originality/value The velocity information provided by the DNS can suppress the pulsar TOA drift, thereby improving the positioning accuracy of the XNAV. This reflects the "deep" integration of these two navigation methods.
更多
查看译文
关键词
Inertial navigation, Kalman filter, X-ray pulsar navigation, Integrated navigation, Celestial navigation, Doppler navigation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要