Chrome Extension
WeChat Mini Program
Use on ChatGLM

Hysteresis in the thermally induced phase transition of cellulose ethers

SOFT MATTER(2022)

Cited 1|Views19
No score
Abstract
Functionalized cellulosics have shown promise as naturally derived thermoresponsive gelling agents. However, the dynamics of thermally induced phase transitions of these polymers at the lower critical solution temperature (LCST) are not fully understood. Here, with experiments and theoretical considerations, we address how molecular architecture dictates the mechanisms and dynamics of phase transitions for cellulose ethers. Above the LCST, we show that hydroxypropyl substituents favor the spontaneous formation of liquid droplets, whereas methyl substituents induce fibril formation through diffusive growth. In celluloses which contain both methyl and hydroxypropyl substituents, fibrillation initiates after liquid droplet formation, suppressing the fibril growth to a sub-diffusive rate. Unlike for liquid droplets, the dissolution of fibrils back into the solvated state occurs with significant thermal hysteresis. We tune this hysteresis by altering the content of substituted hydroxypropyl moieties. This work provides a systematic study to decouple competing mechanisms during the phase transition of multi-functionalized macromolecules.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined