HMGB1-activatied NLRP3 inflammasome induces thrombocytopenia in heatstroke rat

PEERJ(2022)

引用 5|浏览5
暂无评分
摘要
Background. Thrombocytopenia, an early common complication in heatstroke (HS), has been widely considered as a mortality predictor of HS. The mechanism underlying thrombocytopenia in HS remains unknown. It is not known whether NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome is activated in HS platelet, which, in turn, induces platelet activation and thrombocytopenia. This study tried to clarify the activation of the NOD-like receptor signaling pathway under HS conditions and investigate its roles in mediating HS-induced thrombocytopenia. Methods. Rat HS models were established in a certain ambient temperature and humidity. Platelets, isolated from blood, were counted and CD62P, an index of platelet activation, was measured by flow cytometry in all rats. The colocalization of NLRP3 inflammasome in platelet was detected by confocal fluorescence microscopy. Mitochondrial-derived reactive oxygen species (ROS) was detected using the molecular probes. Plasma HMGB1 and IL-1 beta levels were measured by ELISA. Results. Platelet activation, showed by upregulated CD62P, and thrombocytopenia were observed in HS rats. HS activated the NLRP3 inflammasome, which was induced by elevated levels of ROS, while the upregulated CD62P and thrombocytopenia triggered by NLRP3 inflammasome were attributed to the high mobility group box protein 1 (HMGB1) inplasma. Moreover, inhibition of the NOD-like receptor signaling pathway in rats with HS suppressed platelet activation and the decline of platelet count. Similar results were obtained when the receptor toll-like receptor 4 (TLR4)/advanced glycation end product (RAGE) was blocked. Conclusions. The NOD-like receptor signaling pathway induces platelet activation and thrombocytopenia in HS rats. These findings suggested that the NLRP3 inflammasome might be the potential target for HS treatment.
更多
查看译文
关键词
Heatstroke, Platelet, NOD-like receptor, Pyroptosis, Reactive oxygen species, NLRP3 inflammasome
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要