Simultaneous Optical Detection of Multiple Bacterial Species Using Nanometer-Scaled Metal-Organic Hybrids

ANALYTICAL CHEMISTRY(2022)

Cited 2|Views0
No score
Abstract
This paper describes a simple strategy to identify bacteria using the optical properties of the nanohybrid structures (NHs) of polymer-coated metal nanoparticles (NPs). NHs, in which many small NPs are encapsulated in polyaniline particles, are useful optical labels because they produce strong scattered light. The light-scattering characteristics of NHs are strongly dependent on the constituent metal elements of NPs. Gold NHs (AuNHs), silver NHs (AgNHs), and copper NHs (CuNHs) produce white, reddish, and bluish scattered light, respectively. Moreover, unlike NPs, the color of the scattered light does not change even when NHs are aggregated. Introducing an antibody into NHs induces antigen-specific binding to cells, enabling the identification of bacteria based on light scattering. Multiple bacterial species adsorbed on the slide can be identified within a single field of view under a dark field microscope based on the color of the scattered light. Therefore, it is a useful development for safety risk assessments at manufacturing sites, such as those for foods, beverages, and drugs, and environmental surveys that require rapid detection of multiple bacteria.
More
Translated text
Key words
multiple bacterial species,metal–organic hybrids,optical,detection,nanometer-scaled
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined