Reconfigurable Intelligent Computational Surfaces: When Wave Propagation Control Meets Computing

arxiv(2022)

引用 1|浏览10
暂无评分
摘要
The envisioned sixth-generation (6G) of wireless networks will involve an intelligent integration of communications and computing, thereby meeting the urgent demands of diverse applications. To realize the concept of the smart radio environment, reconfigurable intelligent surfaces (RISs) are a promising technology for offering programmable propagation of impinging electromagnetic signals via external control. However, the purely reflective nature of conventional RISs induces significant challenges in supporting computation-based applications, e.g., wave-based calculation and signal processing. To fulfil future communication and computing requirements, new materials are needed to complement the existing technologies of metasurfaces, enabling further diversification of electronics and their applications. In this event, we introduce the concept of reconfigurable intelligent computational surface (RICS), which is composed of two reconfigurable multifunctional layers: the `reconfigurable beamforming layer' which is responsible for tunable signal reflection, absorption, and refraction, and the `intelligence computation layer' that concentrates on metamaterials-based computing. By exploring the recent trends on computational metamaterials, RICSs have the potential to make joint communication and computation a reality. We further demonstrate two typical applications of RICSs for performing wireless spectrum sensing and secrecy signal processing. Future research challenges arising from the design and operation of RICSs are finally highlighted.
更多
查看译文
关键词
reconfigurable intelligent computational surfaces,wave propagation control
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要