Chrome Extension
WeChat Mini Program
Use on ChatGLM

Functional ultrasound localization microscopy reveals brain-wide neurovascular activity on a microscopic scale

NATURE METHODS(2022)

Cited 19|Views14
No score
Abstract
The advent of neuroimaging has increased our understanding of brain function. While most brain-wide functional imaging modalities exploit neurovascular coupling to map brain activity at millimeter resolutions, the recording of functional responses at microscopic scale in mammals remains the privilege of invasive electrophysiological or optical approaches, but is mostly restricted to either the cortical surface or the vicinity of implanted sensors. Ultrasound localization microscopy (ULM) has achieved transcranial imaging of cerebrovascular flow, up to micrometre scales, by localizing intravenously injected microbubbles; however, the long acquisition time required to detect microbubbles within microscopic vessels has so far restricted ULM application mainly to microvasculature structural imaging. Here we show how ULM can be modified to quantify functional hyperemia dynamically during brain activation reaching a 6.5-µm spatial and 1-s temporal resolution in deep regions of the rat brain.
More
Translated text
Key words
Preclinical research,Rat,Sensorimotor processing,Ultrasound,Life Sciences,general,Biological Techniques,Biological Microscopy,Biomedical Engineering/Biotechnology,Bioinformatics,Proteomics
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined