Combined exposure to PM2.5 and high-fat diet facilitates the hepatic lipid metabolism disorders via ROS/miR-155/PPARγ pathway

Free Radical Biology and Medicine(2022)

引用 4|浏览1
暂无评分
摘要
Environmental fine particulate matter (PM2.5), which has attracted worldwide attention, is associated with the progression of metabolic-associated fatty liver disease (MAFLD). However, it is unclear whether dietary habit exacerbate liver damage caused by PM2.5. The current study aimed to investigate the combined negative effects of PM2.5 and high-fat diet (HFD) on liver lipid metabolism in C57BL/6J mice. Histopathological and Oil-Red O staining analysis illustrated that PM2.5 exposure resulted in increased liver fat content in HFD-fed C57BL/6J mice, but not in standard chow diet (STD)-fed mice. And there was a synergistic effect between PM2.5 and HFD on hepatic lipotoxicity. The increased ROS levels and augmented oxidative damage were evaluated in liver tissue of mice treated with PM2.5 and HFD together. In addition, excessive ROS production could activate the miR-155/peroxisome proliferator-activated receptor gamma (PPARγ) pathway, including up-regulation of lipid accumulation-related protein expressions of recombinant liver X receptor alpha (LXRα), sterol regulatory element binding protein-1 (SREBP-1), stearoyl-CoA desaturase-1 (SCD1), fatty acid synthase (FAS) and acetyl-CoA carboxylase 1 (ACC1).The use of miR-155 inhibitors demonstrated the indispensable role of miR-155 in the activation of lipid-regulated proteins by PM2.5 and palmitic acid (PA). Collectively, altering high-fat dietary habits could protect against MAFLD motivated by air pollution, and miR-155 might be an effective preventive and therapeutic target for this process.
更多
查看译文
关键词
Fine particulate matter,High-fat diet,MAFLD,ROS,miR-155,C57BL/6J mice
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要